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Abstract

In this paper a method is presented for the
design of multi-element airfoils in incompressible
flow such that a priori specified aerodynamic and
geometric requirements are fulfilled approximately
An object function is formed by summing the
squared weighted deviations from the prescribed
pressure distribution, zero normal velocity and
geometric conditions. Minimizing the object
function results in the simultaneous determination
of the shape of the airfoil and the real pressure
distribution.

1. Introduction

One of the most important problems of aero-
dynamic design is that of the design of wings that
satisfy certain a priori specified aerodynamic
requirements. Procedures for wing design often
involve the use of socalled inverse calculation
methods which are intended to determine the shape
of a wing that produces a given pressure
distribution.

One of the best known difficulties that may
arise at the application of such inverse methods
is the fact that an arbitrary prescribed pressure
distribution can lead to physically impossible
shapes with e.g. locally negative thickness.
However, engineering arguments available to the
designer will often allow to prescribe the
pressure distribution in a qualitatively or
quantitatively approximated sense only.

A plausible use of this fact can be made by
exchanging the implied amount of freedom for
control over the geometry to be determined.

Most methods that are found in the literature
(e.gs Refs. 2 and 3) leave it to the designer to
modify the prescribed pressure distribution such
that realistic shapes will be determined. In
reference 4 & method is described which contains
as a special feature a procedure for the a poste-
riori modification of the pressure distribution
and hence of the 2D airfoil which generates it,
in order to satisfy additional geometric or aero-
dynamic requirements. Another approach for
implementing aerodynamic or geometric constraints
is described in reference 5. It is based on
minimization of some specified parameter (e.g. the
drag) by variation of the coefficients of a poly=
nomial which describes the airfoil contour. For
each guess of the airfoil contour the flow is:
determined by means of a finite difference method.
At NLR some exploratory investigations have been
carried out based on the idea (Ref. 1) of
developing a least squares technigue for the
design problem such that an a priori specified
balance is obtained between the prescribed
pressure distribution and the geometric require-
ments. As a try out the two-dimensional
incompressible case has been considered. For this
case a singularity method for the simulation of
the flow is the obvious choice. The present paper
gives a brief description of the method as well
as some illustrative numerical results.

2. The flow problem

The two-dimensional incompressible inviscid
flow around a multi-element airfoil is comsidered.
The problem to be solved is to determine the shape
of the airfoil such that it will produce a
specified pressure distribution. It is assumed
that the pressure distribution on all airfoil
elements will be given as a function of the x-
co-ordinate of an axis system together with a
guess of the true shape of the airfoil. On each
element one point will be fixed.

Physically realistic shapes will be ensured by
adding the constraint that the deviation from the
original guess will be small. It will be shown in
section 4 that this requirement can be relaxed
considerably if the prescribed pressure
distribution is realistic itself.
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Figure 1. The flow problem

Formulated in terms of a velocity potential
the flow problem is described by the equations
(see Pig. 1)

¢xx + #&y =0

=0
¢n at the unknown airfoil

¢t= Vt= +V1=Cp contour C (2.3)

(2.1)
(2.2)

in the flow domain G

where Cp is the prescribed pressure coefficients
V, is taken positive going clock-wise from the
s%agnation point and negative going anti clock-
wise.

The geometrical constraint is formulated as:

y(x)aF(x) (2.4)
where y(x) represents the equation of the airfoil
contour to be determined and §(x) represents the
guess of the airfoil shape.

t This investigation was performed under contract with the Netherlands Agency for Aerospace Programs

(NIVR).
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3. Solution method

3.1 Basic idea

An obvious choice for simulating the flow is
the application of a vorticity or doublet distri-
bution along the airfoil contour because in that
way it is ensured that there exists a velocity
potential that satisfies eq. (2.1). In the present
method a vorticity distribution has been chosen
because of the direct relationship between the
vorticity and the tangential velocity along the
airfoil contour:

ap+ -
5 - - AMI)
where the + and - sign refer to the outer and

inner side of the airfoil respectively and where ¥
denotes the local vorticity (see fig. 2)..

(3.1)

Figure 2. The vorticity distribution
If in all contour points of {the airfoil 3 = 0,
the velocity potential & itself is constant along
the inner side. Solving the Dirichlet problem for
the interior with ¢ = constant along the contour
leads to ¢ = constant in the interior.
Then also ¢~ _ o @nd thus according to the fact

that for a ?}grticity distribution
+ -
2¢ '%i =0
on n -
+
also ’a-t = 0.

From t’flgse considerations it follows that the flow
problem formulated in section 2 can be reformulated
ast Determine an airfoil contour (C) together with
a vorticity distribution (¥) such that

¢, =,

: }onc
¢ =0

The tangential velocity on the contour of the air-
foil can be expressed in terms of the vorticity
distribution:

(3.2)

(3.3)

(3.4)

4)::\/“:05 o« - Y sin«. n 4 ) (3-5)
- ﬁ(s) %F{an' Q('_:%) }ds

(3.6)
Jw b ()]s

b=V cosa. = VoS, (k)

Forming now the least squares functional

S
F-f (7% +F°+F )at (3.7)
0]
where +
F, = wt@t -v,) (3.8)
Fo=u 9" (3.9)
F, =W (y-5) (3.10)

then through the minimization of this functional
the functions y and § and the angle of attack «o
will be determined such that the equations (3.3)
and (3.4) will be fulfilled in a least squares
sense.

The fact that eg. (3.4) is satisfied in a least
squares sense instead of by collocation simplifies
the optimization procedure and introduces some
extra flexibility.

The weighting functions W may be used to
counter balance the different requirements
expressed by the equations (2.2) through (2.4).
It will be clear that for W_=0 the problem
reduces to a Dirichlet prob&em, while for wtso a
Neumann problem results.

3.2 Numerical approximations

As the minimization of the functional F will
have to be performed numerically a function
representation must be chosen which should involve
a relatively small number of unknown parameters
and at the same time should offer sufficient
flexibility in contour representation as well as
the possibility to describe the velocity
distribution with sufficient accuracy.

Within the present method a cubic Hermite
polynomial representation has been chosen:

]
oy '
H?re fj and §j+1 are the values of { and —fj and

sz}:JZ £ b 4 h,}(«') +§4}«JJ @ 4}”’&,4_(;)} (.1

ij 41 are the derivatives of { with respect to T at
the nodal points j and j+1 respectively.

The cubic functions h are defined by:

(3.12)

5 =(1+2u)(1_u)2 hy =(3-—2u)u2
J j
I . 2 2
h23=(T:].+1—Cj)u('l-—u) h4j=(fj_ Zj'+1)(1_u)u
T~ '
with u .-_-—-ﬂ-z-_- . (3.13)
G~ G

Thus the airfoil co-~ordinates and the vorticity
are considered as functions of a parameter %.

An obvious good choise for this parameter would be
the arclength measured along the airfoil contour.
However, as the contour is unknown a priori and
updating the parameter choice during the minimi-
zation process would be too costly, T is chosen to
be the arclength measured along the initial guess
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of the airfoil contour.

As a result of the Hermite polynomial
representation the airfoil has a smooth closed
contour with continuous first derivatives (except
at the trailing edge) ‘so that can be evaluated
at any point of the contour. By the further
requirement of zero nett vorticity at the trail~
ing edge no other solutions will be admitted than
those satisfying the Kutta condition of smooth
flow at the trailing edge.

It may be remarked that a quadratic approximation
of 5 would have been sufficient to ensure a.
consistent set of function approximations (see e.g.
Ref. 9). However, from programming point of view
it seemed attractive to use one kind of
approximation for all functions involved.

The integrals of egs (3.5) through (3.7) are
evaluated by means” of Lobatto quadrature formulae
(see e.g. Ref. 10). .

Because any airfoil contour can be derived
fromen initial guess of the airfoil contour by
changing the function y(Z) only, the values of y
and y',
of attack o are the parameters with respect to
vhich the functional F will have to be minimized.

3.3 Solution to the minimization problem

The minimization problem is solved by means of
a method that has been applied to several differ-
ent problems at NLR and that has proven to be very
efficient (see Ref. 6). It is based on a method
proposed by Fletcher (Ref. 7). The generalized
inverse of the matrix of derivatives of P to the
minimization parameters is determined following
Lawson and Hanson (Ref. 8).

The function F of equation (3.7) has
essentially the forms

SNCIS

k=1
where z is the vector of the parameters y., ¥ .,
Yl 83 and  « and where the fk form togeeherJa

F

vector f.
This function is minimized by applying the
following computational algorithm:

1) given % Z(i)

f(l) and the matrix of derivatives J l);
determine a search direction by computing

compute the vector of residuals

é(i)= —J(i)+f(i) where J(i)+ is the
generalized inverse of J 3

set E(i+1)= i(i)+X§(i)
that F(z(iﬂbﬁ‘(ﬁ(i))

if preset conditions with respect to the vari-
ation of the parameters z or with respect to
the residuals f;, are fulfilled, convergence is
considered to be attained; then terminate the
iteration process, otherwise repeat from 1).

If the f, are linear fundtions of Z the solution
to the minimization problem is attained in just
one iteration step. This situation is simulated if
the Neumann problem is considered by setting WtEO,
wnél and making wc relatively large and if the

2) and determineM»0 such

3)

Dirichlet problem is considered by setting Wt=1,

Wn=0 and wc relatively large.

Y and ¥' at the nodal points and the angle .

4.‘Numeiical results

According to the method outlined above a
computer programme has been developed for the
design of airfoil shapes. On the CDC CYBER 72/14
the central processor computing time for a typical
geometry of 25 panels is approximately 5 minutes.
The solutions to six example cases are presented
here.

Example 1
The objective of the first example is to show

that the method is capable of reconstructing a
known geometric shape from the corresponding
pressure distribution.

Starting with an ellipse as initial guess of
the geometry to be determined and with the exact
pressure distribution of a circular cylinder in
uniform flow as target, the circular shape is
reconstructed straightforwardly by the computer
programme, as shown in figure 3. In this case the
weighting functions were chosen as W ;Wnsl and
WO=O, showing that there is no need %o apply the

geometric constraint of equation (2.4) if the
prescribed pressure distribution is kmown to be
realistic, in the sense mentioned before.

Cpt-)
—— Prescribed.
A colculated.

08 06 04 Q2

e 1 'y L J
02 04 06 os%io x

-1Y

g.Pressure distribution.

b.Contour._

Pigure 3. Reconstruction of circular cylinder

Example 2

In figure 4 the velocity distribution for a
Von Karman-Treftz airfoil obtained by solving the
Neumann problem in the way described in section
3.3 (wtzo, W o=l, Wcaloo),is compared with the

"exact" velocity distribution.

N
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The latter velocity distribution is the Hermite
polynomial approximation of the exact solution
obtained by means of conformal transformation.

A reasonable prediction accuracy is obtained when
a representation based on 13 nodal points *

(figure 4b) is used. The solution obtained by
means of 23 nodal points is very satisfactory (fig.

4c).

a) airfoil

By v
wi

asfi-

o —— ]
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b) velocity distributions 13 nodal points

By ¥

05§

oo Tou

o5+

M

-t ~ "exact"

& upper side
+ lower side

sl }present method

¢) velocity distributiony 23 nodal points

Figure 4. Velocity distribution on a Von Karman -
Treftz airfoil

Example 3

The third example demonstrates compatibility
between the inverse method described above and the
direct method of applying eq. (3.4) in a sufficient
number of contour points and solving the resulting
linear equation system for the unknown vorticity
distribution. By means of this direct method the
velocity distribution on an airfoil-flap
configuration has been calculated. Prescribing the
latter distribution as "target" velocity
distribution and starting with a combination of
two symmetric profiles as initial guess of the
airfoil shape, the application of the inverse
method results in the reconstruction of the air-
foil-flap configuration and the velocity
distribution in three iteration steps, as is shown
in figure 5. During the iteration process the
mutual position of the airfoil elements is
determined by fixing the trailing edges, i.e. the

trailing edges of the initial airfoil have the same
co-ordinates as those of the airfoil resulting from
the iteration process.

AN

~converged geometry, iteration step 3

.

iteration step 2

iteration step 1

starting geometry

-a) airfoil shapes

34 v

2+

o Tau

& Calcutated  upper side
+ Colculated lower side
— Prescribed

e

-b) velocity distribution

Figure 5. Reconstruction of an airfoil~flap
configuration
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Example 4

The next example shows how the present method
could be used during a design process. It is
supposed that a designer wants to alter the
velocity distribution of figure 5 into one with a
higher dumping velocity on the main profile and a
rooftop like distribution on the flap. Starting
with the airfoil of figure 5 as initial guess and
fixing the trailing edge of the main airfoil and
ore point on the flap in the neighbourhood of the
main airfoil, the iteration process results in a
rather slight change of the airfoil (fig. 6a) which
produces apparently not completely the desired

velocity distribution (fig. 6b).

converged geometry

stariing geometry

a) airfoil shapes

3¢
2+
"y
14
o Tou
O Coiculated upper side
. + Cokuloted. lower side
<2 = Prescribed

-1

b) veloeity distribution

Figure 6. Inverse problem solution with fixed
mutual position of main profile and flap

Accepting this as the closest possible approximat-—
ion of the target with the given mutual position
of the airfoil elements, a next step could be to
alter the position of the flap with respect to the
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airfoil and to start the iteration process again.
Figure 7 shows the result which is obtained when
the flap is moved downstiream over 10 % of the flap

chord.

converged geometry

AN

starting geometry

a) airfoil shapes

[z

14

8O Cotculated upper side

+ Caoiculated lower side

- Prescribed

e

b) velocity distribution

Pigure 7. Inverse problem solution with a changed
mutual position of main profile and flap

Example

The fifth example shows a possible application
of the geometrical constraint of eq. (2.4). The
velocity distribution of example 4 is chosen as
target again, but now it is tried to maintain the
shape of the main profile and the mutual position
of the elements and to reshape the flap only.
Figure 8 shows the results of two such trials in
comparison with the result of the former example.
It can be seen that the increase of the weight
factor W_ for the main profile leads eventually to
maintaining the shape of the forward airfoil
element.



3 ¥

However, this involves increasing deviations
between real and target velocity distribution.

\ -1 5
& Colcuioted upper side
o = ° W=ty =1 + Caoiculated lower side

(o] 1 n . - Prescribed

Wc=0 WtEWnEl

2 o

Tou
= i i = = i
wc = 10 on main profile wt = Wn =1 ! p 4'r"’,J¢)
W 0 on flap T

c
O Calcutated upper side
+ Caolculated fower side
wu Prescribed
Jns
Wc = 10 on main profile wt = wn =1
W, =0 on flap
340
Wc = 100 on main proflle‘ wt = Wn =1 +
WC =0 on flap
Figure 8a. Inverse problem solution applying a o
geometrical constraint to the main
profiles airfoil shapes
eaL
Benple | A
In the last example the geometry of fig. 5 is — Prescribed
chosen as a start and the velocity distribution of n
example 4 is chosen as target again and the shape W= 100 on main profile . Wt = Wn =1
of the main airfoil is fixed by means of the W =0 on flap
weightfactor W . But now the position of the flap c
is fixed in x~direction only, so that it may Figure 8b. Inverse problem solution applying a
rotate and translate in y-direction. The velocity geometrical constraint to the main
distribution that can be realised in this way has profiles velocity distributions

a strong resemblance to the velocity distribution
that results in the former example (with W _=100)
except in the region of the rooftop targetc
distribution. However, the resulting shape and
position of the flap is very different from that
of the farmer example. (see figure 9)
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converged geometry

iteration step 2.

iteration step 1

clecting geometryb

a) airfoil shapes

O Caicutated unper side

+ Calculated
w— Prescribed

lower side

-2d
b) velocity distribution

Figure 9. Inverse problem solution with fixed

shape of the main profile and free shape

and vertical position of the flap.

311

10.

. Conclusions

A method has been presented for the design of
multi-element airfoils in incompressible flow
which, subject to geometrical constraints,generate
approximately a given distribution of the pressure
coefficient. The method is based on parametric
optimization of a least squares error function.

A vorticity distribution is applied along the air-
foil contour for the simulation of the flow.

It can be concluded from the results that the
approach described here holds very promising
aspects for the process of wing design. The
results indicate that there is probably no need to
apply a geometrical constraint if realistic
pressure distributions are prescribed.

In the event of uncertainty about the possi-
bility to generate a realistic shape the geo-
metrical constraint as introduced here can be
applied. Some results of application of this
constraint for maintaining part of the airfoil
shape have been shown.

In the present method the optimization
parameters have been limited to comprise the
ordinates of the airfoil and the angle of attack.
In principle, however, any other parameters such
as flap angle or the mutual position of the
elements could be included. The geometrical
constraint as applied in the present method is
rather simple, but the basic idea of the method
allows certainly the application of more compli-
cated constraints such as positive thickness and
range of angle of attack.
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List of symbols

P=Pao
C_ = me—— ressure coefficient
LR P
2)
n normal to airfoil contour, taken
positive when pointing outwards
Ny n direction cosines of the normal to
J the airfoil contour
P pressure
s,% arclength along airfoil contour taken
) positive in the direction from
trailing edge to leading edge at the
lower side and in the direction from
leading edge to trailing edge at the
upper side
Xy ¥ orthogonal co-ordinate system
c airfoil contour

F’Fn’FE'Fc least squares error functions

G flow domain

S circumference of the airfoil contour

v velocity

Vt tangential velocity

wc,wn,wt weighting functions (see egs. (3.8)
1o (3.10)

« angle of attack

¥ vorticity

?’Y xy co-ordinates of a point on a line
segment

14 density

¢ velocity potential

4%,4% normal and tangential velocity compo-

nents respectively
I independent variable

Subscripts

J refers to a point from the set
representing the airfoil contour

oo refers to the undisturbed flow

- refers to the inner side of the air-
foil

+ refers to the outer side of the air-
foil
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